$\begin{gathered} \mathbf{H} \\ 2.1 \end{gathered}$	Pauling Electronegativity					
Li	Be	B	C	N	0	F
1.0	1.5	2.0	2.5	3.0	3.5	4.0
Na	Mg	AI	Si	P	S	CI
0.9	1.2	1.5	1.8	2.1	2.5	3.0
K	Ca	Ga	Ge	As	Se	Br
0.8	1.0	1.6	1.8	2.0	2.4	2.8
Rb	Sr	In	Sn	Sb	Te	1
0.8	1.0	1.7	1.8	1.8	2.1	2.5
Cs	Ba	TI	Pb	Pb	Po	At
0.7	0.9	1.8	1.9	1.9	2.0	2.2

Useful units

$$
\begin{array}{ll}
\text { Avogadro number } & \mathrm{N}_{\mathrm{A}}=6.022 \times 10^{23} \mathrm{~mol}^{-1} \\
\text { Gas constant (SI) } & \mathrm{R}=8.3145 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \\
\text { Gas constant } & \mathrm{R}=0.08206 \mathrm{~L} \mathrm{~atm} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \\
1 \mathrm{~atm}=101325 \mathrm{~Pa}=760 \mathrm{~mm} \mathrm{Hg} \\
1 \mathrm{~m}^{3}=10^{3} \mathrm{~L} &
\end{array}
$$

Q1 Consider the Lewis structure and the VSEPR-geometry of these molecules and decide which molecule has a linear structure.
a) HCN
b) $\quad \mathrm{NH}_{4}{ }^{+}$
c) $\quad \mathrm{CO}_{3}{ }^{2-}$
d) SeF_{2}
e) $\mathrm{H}_{2} \mathrm{O}$

Q2 Complete the Lewis structure of the I_{3}-ion and identify the appropriate hybridization of the central I-atom
a) $\quad \mathrm{sp}_{2}$
c) sp^{3}
d) dsp^{3}
e) $\quad d^{2} s^{3}$
I_{3}-ion:
[l-I-।]
f) none of the above

Q3 For which of these molecules do you predict the smallest bond angle?
a) $\quad \mathrm{CH}_{4}$
b) $\quad \mathrm{NH}_{3}$
c) $\mathrm{H}_{2} \mathrm{~S}$
d) $\quad \mathrm{CCl}_{4}$
e) $\quad \mathrm{SiF}_{4}$

Q4 As a response to allergens the body produces histamine. Complete the Lewis structure. How many sp ${ }^{3}$ hybridized carbon atoms do you identify in this molecule?

a)	2
b)	3
c)	4
d)	5
e)	none

Histamine:

Q5 How many σ-bonds do you identify in the Histamine molecule?
a) 2
b) 15
c) $\quad 17$
d) $\quad 19$
e) 22

Q6 Which of the following gas atoms or molecules has the largest root mean square velocity $u_{r m s}$ in a sample of our atmosphere at STP?
a) Ar
b) $\quad \mathrm{CO}_{2}$
c) $\quad \mathrm{O}_{2}$
d) $\quad \mathrm{CH}_{4}$
e) they have all the same $u_{\text {rms }}$

Q7 Argon effuses into a vacuum with a rate of $20 \mathrm{~mL} / \mathrm{min}$. An unknown gas under the same conditions effuses with a rate of $30.7 \mathrm{~mL} / \mathrm{min}$. Which one of the following gases could it be?
a) $\quad \mathrm{Ne}$
b) $\quad \mathrm{He}$
c) $\quad \mathrm{NH}_{3}$
d) $\quad \mathrm{UF}_{6}$
e) $\quad \mathrm{H}_{2}$

Q8 Calculate the average kinetic energy of Methane $\left(\mathbf{C H}_{4}\right)$ in $\mathrm{J} / \mathrm{mol}$ at $\mathrm{t}=\mathbf{2 5}{ }^{\circ} \mathbf{C}, \mathrm{P}=\mathbf{1}$ atm
a) $3717 \mathrm{~J} / \mathrm{mol}$
b) $311 \mathrm{~J} / \mathrm{mol}$
c) $2477 \mathrm{~J} / \mathrm{mol}$
d) $22.4 \mathrm{~J} / \mathrm{mol}$
e) $36.68 \mathrm{~J} / \mathrm{mol}$

Q9 What is the density in g/L of Helium (He) in a stratospheric weather balloon at an altitude of ca $\mathbf{1 5 , 0 0 0} \mathbf{~ m} ; \mathbf{t}=-43^{\circ} \mathrm{C}$, and $P=66,000 \mathrm{~Pa}$
a) $\quad 0.138 \mathrm{~g} / \mathrm{L}$
b) $\quad 14.01 \mathrm{~g} / \mathrm{L}$
c) $\quad 138 \mathrm{~g} / \mathrm{L}$
d) $\quad 0.000117 \mathrm{~g} / \mathrm{L}$
e) Additional information is needed

Q10 What is the pressure in the closed container when you read a $\Delta \mathrm{h}$ of $\mathbf{1 2 5} \mathbf{~ m m}$ on the open u-tube manometer filled with mercury at an atmospheric pressure of 101325 Pa?
a) 117990 Pa
b) $\quad 84659 \mathrm{~Pa}$
c) $\quad 16665 \mathrm{~Pa}$
d) 125 torr
e) 760 torr

Q11 The a value in the van der Waals equation for Xe is \qquad than Ne. The b value of Ne is \qquad than Ar. Fill in the blanks using the words, respectively:
a) larger, larger
b) larger, smaller
c) smaller, larger
d) smaller, smaller
e) cannot be answered based on the information given

Q12 Which one of the following statements can be deduced from the molecular distribution of speed graphs shown below, corresponding to 3 different gases having different molar masses M; the y-axis corresponds to the fraction of molecules with a particular speed:

Molecular Speed u m/s
a) The average kinetic energy per mole of gas must be different for the three gases.
b) $\mathrm{M}_{1}<\mathrm{M}_{2}<\mathrm{M}_{3}$ (M is the molar mass).
c) The temperature of Gas 3 must be higher than the temperature of Gas 1 , otherwise its distribution function cannot be broader as shown.
d) The molecules of Gas 2 move at a speed of $300 \mathrm{~m} / \mathrm{s}$ and collide with each other, as a result the molecules undergo only a change in direction. The pressure exerted on the wall is a function of the frequency of collisions and the speed at which the particles are moving.
e) All are false

Q13 Consider CO_{2} and Ne under the following conditions:

Flask A, CO_{2} (g)	Flask B, Ne (g)
2 moles	3 moles
740 K	370 K
0.50 atm	0.80 atm

Which of the following statements is true?
a) The volume CO_{2} occupies is twice the volume occupied by Ne .
b) The force exerted when a CO_{2} molecule collides with the walls is smaller than the force exerted when a Ne molecule collides with the walls.
c) The average kinetic of a Ne molecule is twice the average kinetic energy of CO_{2} molecule.
d) The $u_{r m s}$ for the CO_{2} molecules is smaller than the u_{rms} for the Ne molecules.
e) All are false

Q14 The valve between a 10-L tank containing a gas at 1 atm and a 3-L tank containing a gas at 0.5 atm is opened. Nothing else is changed in the environment. The two gases do not react. Calculate the final pressure in the tank:
a) 0.88 atm
b) 1.5 atm
c) 2.45 atm
d) 0.75 atm
e) Not enough information is given to solve for the final pressure.

Q15 The hybridization of I in $\mathrm{ICl}_{4}{ }^{-}$is:
a) sp
b) sp^{2}
c) sp^{3}
d) dsp^{2}
e) $d^{2} s p^{3}$

Q16 Which of the following molecules (\mathbf{C} : central atom) contains the shortest $\mathbf{C}-\mathrm{O}$ bond:
a) $\mathrm{CH}_{3} \mathrm{OH}$
b) $\mathrm{CH}_{2} \mathrm{O}$
c) CO
d) CO_{2}
e) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$

Q 17 Which of the following molecules has a resultant dipole moment $\boldsymbol{\mu} \neq 0$?
a) CHCl_{3}
b) BF_{3}
c) TeF_{4}
d) a and c
e) all of the above

Q18 Which of the following is expected to be the best resonance structure of SCN^{-}
a)

b)

c)

d)

e)

19 Which of the following electron arrangement and molecular geometries around the central atom ($1^{\text {st }}$ atom is the central atom) correctly correspond to the molecule in question:
a) CO_{2}, electron arrangement: trigonal planar; geometry: bent
b) ClF_{3}, electron arrangement: octahedral; geometry: T -shaped
c) XeCl_{4}, electron arrangement: trigonal bipyramid; geometry: see-saw
d) XeF_{2}, electron arrangement: trigonal bipyramid; geometry: linear
e) b and c are correct

Q20 How many atoms are in the same plane for the following molecule?

a) 4
b) 5
c) 8
d) 9
e) 10

Periodic table:

